The Dual Boundary Element Method: Effective Implementation for Crack Problems
نویسندگان
چکیده
The present paper is concerned with the effective numerical implementation of the two-dimensional dual boundary element method, for linear elastic crack problems. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied on one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. Both crack surfaces are discretized with discontinuous quadratic boundary elements; this strategy not only automatically satisfies the necessary conditions for the existence of the finite-part integrals, which occur naturally, but also circumvents the problem of collocation at crack tips, crack kinks and crack-edge corners. Examples of geometries with edge, and embedded crack are analysed with the present method. Highly accurate results are obtained, when the stress intensity factor is evaluated with the J-integral technique. The accuracy and efficiency of the implementation described herein make this formulation ideal for the study of crack growth problems under mixed-mode conditions.
منابع مشابه
DUAL BOUNDARY ELEMENT ANALYSIS OF CRACKED PLATES
The dual boundary element method is formulated for the analysis of linear elastic cracked plates. The dual boundary integral equations of the method are the displacement and the traction equations. When these equations are simultaneously applied along the crack boundaries, general crack problems can be solved in a single-region formulation, with both crack boundaries discretized with discontinu...
متن کاملA dual BIE approach for large-scale modelling of 3-D electrostatic problems with the fast multipole boundary element method
A dual boundary integral equation (BIE) formulation is presented for the analysis of general 3-D electrostatic problems, especially those involving thin structures. This dual BIE formulation uses a linear combination of the conventional BIE and hypersingular BIE on the entire boundary of a problem domain. Similar to crack problems in elasticity, the conventional BIE degenerates when the field o...
متن کاملDual Boundary Element Method Applied to Antiplane Crack Problems
This paper is concerned with an efficient dual boundary element method for 2d crack problems under antiplane shear loading. The dual equations are the displacement and the traction boundary integral equations. When the displacement equation is applied on the outer boundary and the traction equation on one of the crack surfaces, general crack problems with anti-plane shear loading can be solved ...
متن کاملOn the crack propagation modeling of hydraulic fracturing by a hybridized displacement discontinuity/boundary collocation method
Numerical methods such as boundary element and finite element methods are widely used for the stress analysis in solid mechanics. This study presents boundary element method based on the displacement discontinuity formulation to solve general problems of interaction between hydraulic fracturing and discontinuities. The crack tip element and a higher order boundary displacement collocation techn...
متن کاملThree-Dimensional Dynamic Fracture Analysis Using the Material Point Method
This paper describes algorithms for threedimensional dynamic stress and fracture analysis using the material point method (MPM). By allowing dual velocity fields at background grid nodes, the method provides exact numerical implementation of explicit cracks in a predominantly meshless method. Crack contact schemes were included for automatically preventing crack surfaces from interpenetration. ...
متن کامل